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Abstrakt

Spracovanie prirodzeného jazyka má v dne²nom informa£nom svete mnoho
vyuºití. Táto práca ukazuje niektoré zaujímavé aplikácie spracovania priro-
dzeného jazyka a to najmä s pouºitím na slovenský jazyk.

Najprv sú vysvetlené základné lingvistické koncepty a koncepty teórie
formálnych jazykov. Práca takisto obsahuje základné informácie o slovenskom
jazyku (o jeho morfológii a syntaxi).

Potom sú predstavené metódy (v²etky zaloºené na spracovaní textového
jazyka) spolu s ich aplikáciami a príkladmi. Sú tieº ukázané ich limitácie. Tieº
je popísaná originálna metóda pre stemovanie (zoskupovanie pod©a kore¬ov
slov), a jej porovnanie s niektorými známimi stemmermi .

k©ú£ové slová: spracovanie prirodzeného jazyka, slovenský jazyk, grama-
tická indukcia, strojový preklad

Abstract

Nowadays, natural language processing has a lot of uses in our information
world. This work shows some interesting applications of natural language
processing, mainly with application to Slovak language.

First, basic linguistic concepts and concepts of theory of formal languages
are explained. The work also contains basic informations about Slovak lan-
guage (its morphology and syntax).

Then methods (all of them based on textual language processing) are in-
troduced, together with applications and examples. Also their limitations are
presented. Also an original method for stemming (grouping words according
to their root) is described.

keywords: natural language processing, Slovak language, grammatical in-
duction, machine translation
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Introduction and Overview

This work deals with textual methods of natural language processing. In the
�rst chapter, basic language concepts are presented � what is the language,
what is the de�nition of natural language, how can be languages related to
each other, and how we learn the language.

Second chapter concerns formal languages in order to prepare theoreti-
cal grounds. The third chapter introduces the reader to the computational
linguistics and natural language processing and the fourth chapter explains
morphology and syntax of Slovak language. The �fth chapter introduces ma-
chine translation and presents an example of this method. The sixth chapter
presents various applications like chatterbots or mechanical rephrasing. The
last chapter presents my own method � using a grammar induction to create
a stemming dictionary for Slovak language.
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Chapter 1

Language

Language is one of the most interesting phenomena in human abilities. It
serves as a foundation for ideas formulation and their communication � we use
it to speak to others and also to speak to ourselves in our minds. It is known
that animals (e.g. bees) also use some � much simpler � form of language.
Human language is a broad and complex system. It probably emerged as a
support for cooperation, and was supported by growth of the brain. Since
then it has noticeably evolved and is deeply engraved in our culture. The
di�erence between animal language and human language is vast, therefore it
is speculated to be caused by brain di�erences between humans and animals.
Our ability to use a complex language is due to Broca's area, Wernicke's
area, Primary Auditory Cortex, Supramarginal gyrus, Angular gyrus, and
possibly other areas. Some use of language is linked to theory of minds �
our ability to understand other's actions, which seems to be rooted in mirror
neurons.

A language always uses some kind of symbols to convey meaning. It also
needs a set of rules which describe how these symbols can be used. This
manipulation with symbols is cognitively demanding.

The observation of symbolic manipulations in the language also gave an
impulse for the idea of formal languages. Theory of formal languages concerns
primarily word construction, operations with sets of words, and examines
mathematical properties of these constructions. To be distinguished from a
formal language, the term natural language is sometimes used for a human
language.

An arti�cial (constructed) language is a language created deliberately for
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4 CHAPTER 1. LANGUAGE

some speci�c purpose. It could be intended for simplifying communication,
for example Esperanto was created to be easy to learn and politically neutral.
A language could be also created as an experiment in linguistics. Lojban
was created to re�ect the principles of logic, and to test the Sapir�Whorf
hypothesis. This hypothesis states that the language, because of its limits,
in�uences our thought and sometimes also our behavior. A language can be
created as an art, e.g. as a �ctional language in a fantasy book, movie, or a
computer game � Tolkien's Quenya and Sindarin, former inspired by Finnish
and latter by Welsh; Klingon language in Star Trek 1, Simlish in The Sims
game . A computer language is a language created to communicate with a
computer, e.g. to express an algorithm (programming language), to specify
the content or layout of a web page (e.g. HTML, CSS), or more broadly, to
annotate text with some kind of meta-information (markup language, e.g.
XML). Lastly, a language is also used for a speci�c form of natural language,
e.g. English language.

1.1 Natural language

Natural language is any language which evolved in a natural way to commu-
nicate between humans. It was �rst spoken and gained a written form only
after a long time. Only explanation rather than construction of its rules is
attempted, with possible exception of small regulations by an o�cial body
(e.g. Russian Language Institute of the Russian Academy of Sciences, Rat
für deutsche Rechtschreibung, �udovít �túr Institute of Linguistics of the
Slovak Academy of Sciences).

Natural languages are subject of study of linguistics. Exact de�nition of
the term (natural) language varies among di�erent linguists. We do not know
and understand all aspects of natural languages. By comparing di�erent
natural languages and by executing linguistic experiments we try to learn
about them. This is somewhat a paradox: a normal human child is able to
learn a language; however we do not understand this process well and we are
not able to implement satisfactory understanding of a natural language into
computers. Every one of us is an everyday user of some natural language.
Despite of this, one could be perplexed by a �simple� linguistic question, for
example, what is the meaning of the word �of�? We use it almost intuitively.

1which is probably the most developed �ctional language with many �alien�, uncommon
features. Even an opera with the name � `u' � (�universe�) was written in Klingonaase.
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Every pre-school child is able to use grammar, even if it cannot not explicitly
state the rules.

1.2 Language family

The languages of the world can be divided into language families. A lan-
guage family is a group of phylogenetically related languages � derived from
a common ancestor language (called proto-language, original language, com-
mon language, or basic language). In some language families this original
language can be reconstructed to some extent by a systematic comparison
of individual languages. The phylogenetic relationships between languages is
studied by historical and comparative linguistics.

Two or more di�erent languages can in�uence each other also because of
the geographical proximity and an intensive language contact between the
speakers of the languages. This group of languages is called linguistic area
or �Sprachbund� (from German). The languages may be phylogenetically
unrelated (e.g. Slovak and Hungarian) and thus the secondary similarities
must be distinguished from the primary � phylogenetic � relationship. In
many cases it is possible to know what languages belong to the given language
family, however it might be more di�cult to establish the relationship (the
phylogenetic tree) of the family.

The phylogenetic classi�cation can be guessed from the structural features
(such as in�ection, agglutination, ergativity, vocal harmony, tonal language,
etc.), however this may or may not indicate a common proto-language. Geo-
graphical and historical information can be used to detect linguistic areas and
decide whether the similarities of the languages evolved through the contact
or are the result of the same phylogenetic origin.

Sometimes the dialects vary from one location to a neighboring one only
slightly so the speakers understand each other without problems, however,
the greater the distance becomes, the greater are the accumulated di�erences
� at a certain distance they are not intelligible. It is a question where to draw
the line � the term dialect continuum is used in this situation. In many cases,
the language de�nition depends also on political or social conditions.
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Figure 1.1: Distribution of the major language families, from [6].

1.3 Language learning/acquisition

Language learning hypothesis is closely related to language origins. Some see
language as innate to a large extend, some think that we learn most of the
language through social interaction. The main source of language acquisition
knowledge is the observation of children.

Language development among children is gradual. First comes babbling,
responding to its name, responding to human voice and its tone. The child
then repeats isolated words, mainly nouns or phrases. Then it proceeds
to in�ection and simple grammatical constructions and can follow simple
commands. Later it can use simple sentences with a verb and use pronouns.
It can reason about simple things. Older children can grasp more di�cult
concepts and use complex sentences [23].

Language development is almost complete at about 8 years, however, we
can learn new words or improve our language use during the whole lifetime.
For example, Japanese children master complicated Japanese honori�c speech
and politeness at the teen age.

1.3.1 Theories of language acquisition

One of the most prominent theories is the universal grammar theory asso-
ciated with Noam Chomsky, who began to introduce formal concepts into
linguistics[3]. In a nutshell, the theory states that some rules � grammar re-
strictions � are innate. When a child is learning a language, a corresponding
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part of the brain (�Language Acquisition Device�) recognizes �parameters� of
the concrete language (such as the usual word order � Subject-Verb-Object,
Subject-Object-Verb, etc.). The restrictions help the child to choose from
many hypothetically possible grammars and the innate cues help to recog-
nize the principles of the language. The current version of Chomsky's idea
is called �minimalist program� proposed in [4].

1.3.2 Language acquisition modelling

Some argue, that the symbolic approach of generative grammars cannot fully
account mistakes and errors which a child makes when learning a language.

Connectionist models usually focus on the word prediction task (started
by the work [10], which can be modelled also by unsupervised approach [12].
However also non-adjacent dependencies are modelled [28, 13].

There exist also computational models of language acquisition, e.g. ADIOS
(Automatic Distillation of Structures). For Slovak language, its modi�ca-
tion AMIGOS (Adios' morphologically-intensive-grammar-oriented special-
ization) was developed in [39].
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Chapter 2

Formal languages

A formal language is a set of �nite words (i.e. of �nite length) over some
alphabet. Instead of the term �word� sometimes the term �string� is used.
Depending on the context and application, the alphabet can consist of let-
ters, symbols, or tokens. Formal languages are suitable for a mathematically
precise description of the words and the language, for example a formal pro-
gramming language speci�cation can be useful to avoid ambiguity and con-
fusion. Although the theory of formal languages uses terms borrowed from
natural languages � language , word , alphabet , grammar , etc. � these
are precisely de�ned mathematical constructs and their meaning can di�er
slightly from that of natural languages.

2.1 De�nitions

De�nition 1. An alphabet is a �nite nonempty set of symbols.

De�nition 2. A word is a �nite sequence of symbols from the alphabet. An
empty word is denoted by the symbol ε.

De�nition 3. A (formal1) language is a set of words.

The formal languages theory studies mostly syntactical � structural prop-
erties of a formal languages. A formal language can be speci�ed using

• mathematical notation � set speci�cation (e.g. L = {an | n is a prime}
1I will sometimes drop the adjective �formal� if the context is clear.

9
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• set of rules describing, how it is possible to generate words � a (formal)
grammar

• an automaton (a theoretical machine), which for a given word decides,
whether this word belongs to the language � it is �accepted�

• a regular expression, which matches words of this language

An important part of formal languages theory concerns of relations be-
tween these speci�cation formalisms. I will introduce some of these for-
malisms and some problems in this chapter.

2.2 Operations on words and languages

For convenience, I will introduce some operations on words and (almost)
analogical operations on languages.

De�nition 4. Let x and y be words. Then x.y (or sometimes only xy)
means word concatenation, i.e. if x is a sequence of symbols a0, a1, . . . , am

and y = b0, b1, . . . , bn , then x.y = a0, a1, . . . , am, b0, b1, . . . , bn.

De�nition 5. The powers are de�ned as x0 = ε, x(i+1) = x.xi.

De�nition 6. The iteration is de�ned by

x∗ = ∪∞i=0x
i

For languages, analogous operations can be de�ned:

De�nition 7. Let L1 and L2 be two languages. Then L1.L2 (or sometimes
only L2L2) is the language consisting of all words of the form vw where v is
a word from L1 and w is a word from L2.

De�nition 8. The potency is de�ned by L0 = {ε}, L(i+1) = L.Li.

De�nition 9 (Kleene iteration and the �plus� operator). The Kleene itera-
tion is de�ned by

L∗ = ∪∞i=0L
i

In addition, let us de�ne
L+ = ∪∞i=1L

i

In addition to these operations we can use the standard set operations ∪,∩,⊂
and other. The negation ¬L is de�ned with respect to all possible words of
the given alphabet. These operators could be used also for alphabets.
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2.3 Formal grammar

De�nition 10. Grammar is quadruple (N, T, P, σ), where N is a set of
nonterminals, T is a set of terminals, P is a set of rules, σ is a starting
nonterminal. The rules of P have to be of the form (N ∪ T )∗N(N ∪ T )∗ →
(N ∪ T )∗ .

De�nition 11. The relation ⇒G of one-step derivation in G is de�ned by

x⇒G y ⇐⇒def ∃u, v, p, q ∈ (T ∪N)∗ : x = u.p.v ∧ p→ q ∈ P ∧ y = u.q.v

The relation ⇒∗G is the re�exive transitive closure of the relation ⇒G.

De�nition 12. (Language generated by the grammar) The language gener-
ated by the grammar G is denoted L(G) = {w | σ ⇒∗G w}.

2.4 Grammars of di�erent power

The form of the rule can be further restricted. According to the level of
restriction, a hierarchy of these grammar classes can be build. �Hierarchy�
means that each class contains the preceding classes.

regular grammar allows only rules of the form N → T ∗N or N → T ∗,
i.e. the nonterminal can be at most one and must be at the end of the
rule �body� and the �head� is restricted to one nonterminal.

context-free grammar allows only rules of the form N → (N ∪ T )∗,
i.e. the head of the rule must be only one nonterminal, without the
�context� (what gave the name of this class).

context-sensitive grammar allows only rules of the form xαy →
xβy, where x, y ∈ (N ∪ T )∗, α ∈ N, β ∈ (N ∪ T )+, i.e. the �head� of
the rule can specify context, which must be preserved. Moreover, the
nonterminal β must not be erased. As a special exception, the rule
σ → ε is permitted2.

unrestricted grammar allows rules of any form, i.e. (N ∪T )∗N(N ∪
T )∗ → (N ∪ T )∗.

2This enables the grammar to generate an empty word . This technicality makes
context-sensitive languages a superclass of context-free languages; without this addition
only a context-free languages not containing ε would be contained.
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2.5 Chomsky hierarchy

An interesting �nding [29] is that the hierarchy of grammar classes, which
seems arbitrary at �rst look, corresponds to the hierarchy of automaton
classes. The regular languages class (languages generated by a regular gram-
mar) contains all �nite languages (�nite sets of words). A regular language
can be recognized by a Finite State Automaton. The context-free languages
class corresponds to the class of languages accepted by Non-deterministic
Push-down Automaton. A context-sensitive language can be generated by
a context-sensitive grammar or accepted by a Linear Bounded Automaton.
The class of all languages generated by unrestricted grammar corresponds to
the languages recognized by a Turing machine; or in another words, to the
class of recursively enumerable languages. For the respective de�nitions of
the machines (FSA, NPDA, LBA, Turing machine) I refer the reader to [15].

Figure 2.1: Chomsky hierarchy of languages

It is necessary to understand this diagram as a depiction of a series of
theorems: every set is proper; it is possible to prove that the lower class
language can be expressed by the means of the upper class, and that there
exist languages in the upper class that cannot be expressed by the means of
the lower class.
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2.6 Grammar induction

Grammar inference is a special case of inductive learning, in which the goal is
to create a formal grammar from positive and negative examples of the words
of the language. Positive examples should belong to the language generated
by the grammar, while negative should not be found in it.

There is always an in�nite number of grammars satisfying this criterion;
we usually look for the �simplest� grammar (e.g. with the lowest number
of rules). This corresponds to the Minimal Description Length principle[35].
However, as the Kolomogorovian complexity is incomputable, usually an ap-
proximation su�ces.

The basic algorithm can be described as follows. An initial grammar G0

is guessed. Often it is useful to specify the type of grammar (1, 2 or 3), and
thus place constraints on the forms of the candidate rewrite rules. In the
absence of other prior information, it is traditional to make G0 as simple
as possible and gradually expand the set of productions as needed. Positive
training sentences x+ are selected from D+ one by one. If x+ cannot be
parsed by the grammar, then new rewrite rules are proposed for P . A new
rule is accepted if and only if it is used for a successful parse of x+ and does
not allow any negative samples to be parsed. [8]

In Chapter 7, I propose a method for grammatical inference based on
Myhill-Nerode equivalence.
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Chapter 3

Computational Linguistics and

Natural Language Processing

3.1 Linguistics and computational linguistics

Linguistics is the science of human language. It studies the language form
(morphology, syntax, phonology), language meaning (semantics and prag-
matics) and the language in various context, such as the language origin and
history, the use of language in society, psycholinguistics and neurolinguistics,
which study language in the brain; language learning and acquisition in chil-
dren; and discourse analysis, which analyzes the structure of language and
language coherence and cohesion.

Computational linguistics studies the language from a computational per-
spective. It can be divided according to the type of language studied � spo-
ken or written; and according to the respective task: whether the language
is generated or analyzed. It is closely related to the �eld of natural language
processing, which concerns the interactions between computers and human
(natural) languages.[24]

15



16 CHAPTER 3. COMPUTATIONAL LINGUISTICS AND NLP

3.2 Some linguistics concepts

3.2.1 Grammar

The grammar refers in linguistics to any form of systematic language descrip-
tion. This can mean only the rules, or also the corresponding research. There
is a question how di�erent natural languages are from formal languages (e.g.
the work of Noam Chomsky).

Usually the terms syntax, morphology and phonology are used for the
respective, more speci�c, �elds. In this work, we will focus on written text,
so we will skip phonology, which systematically studies the use of the sound
to encode meaning.

3.2.2 Syntax

Syntax focuses on principles for constructing sentences, such as word order.

3.2.3 Morphology

Morphology studies what form the words take in the sentence, the rules which
in�uence this form, and parts of the form. It analyzes how the words are
created, and how they change depending on the context in which they occur.

3.3 Di�erent levels of analysis

A given text can be analyzed from di�erent perspectives. A good illustration
is that the mistake(s) can occur at di�erent levels; and still the other levels
can in�uence the perspective.

Vamjvms sdfklj asd�jk. (nonsensical words)

Crocodile chair eleven. (collection of words without meaning)

This is a sentnece. (a typo, but otherwise correct)

Me hunger have. (grammatically incorrect, but with sense)

Colorless green ideas sleep furiously. (Chomsky [2] � nonsensical, but
grammatically correct )
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Five plus seven is thirteen. (pragmatically incorrect)

Bratislava is the capital of Slovakia. (correct)

Take as an example the third sentence. It contains a typo; however it is
easily understood � . Moreover, in the further context, it is a correct example
of a typo � therefore if I use a spellchecker to check my work, I would not
want it to be corrected. Could we even imagine some spellchecker in the
future which will understand this?

Similarly, the sixth sentence does not mean that the author of this work
does not know elementary math. Correcting �thirteen� to �twelve� would be
absurd.

3.4 Challenges of natural language processing

and AI-Completeness

Many tasks in natural language processing, such as machine translation, and
also other problems of Arti�cial Intelligence, are considered di�cult and are
not solved to our satisfaction. Some scientists have hypothesized, that solving
these problems is equivalent to creating a Strong AI, or in another words, to
make computers as intelligent as humans.

The concept was created in analogy to NP-Completeness class in compu-
tational complexity. A formalization using human-assisted Turing machine
(counting the complexity of the human and of the computer part) was pro-
posed; however many problems in AI are not yet formalized, so this formal-
ization has only a limited use.
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Chapter 4

Slovak language

Slovak language belongs to West Slavic languages. Similar to other Slavic
languages, it is a fusional (in�ecting) language with a rich morphology in-
cluding alternations in derivational and in�ectional morphology.

4.1 Lexical categories

Slovak language has 10 lexical categories:

1. nouns (podstatné mená): denote persons, animals, things

2. adjectives (prídavné mená): denote properties of persons, animals and
things

3. pronouns (zámená): substitute nouns (refer to them)

4. numerals � number names (£íslovky): denote count or order

5. verbs (slovesá): express action or state

6. adverbs (príslovky): modify meaning of verbs

7. prepositions (predloºky): express relations between words

8. conjunctions (spojky): connect words, phrases or sentences

9. particles (£astice): express relation of speaker to the statement
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10. interjections (citoslovcia): express emotions or sounds

Words in the �rst �ve categories are �ective (they can change according
to the context). The other �ve categories are in�ective � words does not
change. Verbs are conjugated.

4.2 Declension

Declension is the in�ection of nouns, adjectives, pronouns and numerals to
express the grammatical categories � gender, number, case. This is usually
accomplished by adding the respective su�x to the root form of the word
(stem). In a noun phrase, the grammatical categories of adjective(s) and
numeral(s) match that of the noun.

The Slovak language has three genders (masculine, feminine, neutral),
two possible number categories (singular and plural) and six morphological
(seven grammatical) cases1. The nouns can be divided in roughly 4 declension
paradigms for each gender (12 paradigms together). Words belonging to
the same paradigm have su�xes in the respective case and number. The
adjectives have 4 paradigms, numerals have 4 paradigms. Pronouns usually
have each its own declension forms, some are declensed like adjectives.

The authoritative end exhaustive information on Slovak declension can
be found in [9].

For illustration, I have chosen to show the declension of only one phrase:
jeden pekný chlap � one nice man. As mentioned above, gender, number and
case of the three words in the phrase are the same. The declension is shown

1In Slovak language, the �fth case � the vocative case is almost always equivalent to
the nominative form. Only a few words retained di�erent form, and are used in religious,
literary or ironic context.

chlap � chlape (man � O, man!)
chlapec � chlap£e (boy � O, boy!)
£lovek � £love£e (human � O, man!)
Boh � Boºe (God � O, God!)
pán � pane (lord � O, Lord!)

Because of this, the morphological vocative case is usually considered dead. However,
there is a nice linguist joke in Slovak: ��love£e, netáraj, v sloven£ine vokatív nemáme!�
(�O, man [in vocative], don't blather, we don't have vocative case in Slovak!�)
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for both singular and plural2:
case singular plural
nominative jeden pekný chlap jedni pekní chlapi
genitive jedného pekného chlapa jedných pekných chlapov
dative jednému peknému chlapovi jedným pekným chlapom
acusative jedného pekného chlapa jedných pekných chlapov
vocative jeden pekný chlape jedni pekní chlapi
local jednom peknom chlapovi jedných pekných chlapoch
instrumental jedným pekným chlapom jednými peknými chlapmi

4.3 Conjugation

Conjugation is the in�ection of the verb to express the grammatical categories
� number, tense, mood, and aspect. The number of the verb and number
of the agent (usually the noun or pronoun) match each other. Most of the
Slovak verbs are divided into 14 conjugation paradigms, the rest of them has
irregular conjugation.

For illustration, the conjugation of the verb otvára´ � to open in the
present continuous tense (indicative mood, imperfective aspect) is shown:

person singular plural
�rst otváram otvárame
secong otvára² otvárate
third otvára otvárajú

4.4 Syntax

As was already mentioned, the grammatical categories of adjective(s) and
numeral(s) match grammatical categories of the noun they refer to and usualy
precede it. The verb matches the subject in the number.

The word order is relatively free, because the role of the word can be
deduced from the rich morphology. The neutral (unmarked) word order is

2A reader might wonder: How a numeral �one� can possibly have a plural form? In the
plural context, it is understood as a group numeral (Jedni chlapi robili toto, druhí tamto
� One group of men was doing this, and the others were doing that), or as an emotive
emphasizing (in vocative) Vy jedni chlapi! (Ste v²etci rovnakí!) or even with the changed
word order Vy chlapi jedni! � �oh, you men! (You are all alike!)�
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Subject-Verb-Object for indicative mood and Verb-Subject-Object for inter-
rogative mood (in question). A di�erent word order expresses emphasis or
can be used in poetic style.



Chapter 5

Machine translation

The current leading technology in machine translation is statistical machine
translation. Statistical machine translation is based on statistical methods.
First a number of text samples � pairs � source language/destination language
is obtained. The statistics tells us what words or phrases in source language
usually (with a de�ned probability) corresponds to what phrases in destina-
tion language, according to the Bayes theorem: p(d|s) = p(s|d)p(d)/p(s).

The text we want to translate is analyzed and the phrase with the best
probability is used. According to the Beyes theorem, a greater weight is
assigned to longer phrases. This means that it is possible to evaluate the
context � if a longer phrase is available, it is used instead of a shorter phrase,
which might had not fully captured the context. A word can have a di�er-
ent meaning when used together with di�erent words. This is common � a
good example are the auxiliary verbs � �have� in �have been� has a di�erent
meaning from �have� in �have got�.

However, even in the idealized model, a number of assumptions and sim-
pli�cations must be made to make the model computationally feasible (for
example, selecting a good word order is an NP-complete problem [19]).

5.1 An example � Google Translate

Perhaps the most common tool nowadays is Google Translate which we will
use to illustrate statistical machine translation[16]. I will present a sample
of text in English, then its automatic translation in Slovak. Next comes
the correct translation in Slovak, which I have created myself by hand, to

23
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illustrate the di�erence. A �nal sample is the translation of the correct Slovak
back into English using Google Translate.

1 � English source
The current leading technology in machine translation is statisti-
cal machine translation. Statistical machine translation is based
on statistical methods. First a number of text samples � pairs �
source language/destination language is obtained. The statistics
tells us what words or phrases in source language usually (with
a de�ned probability) corresponds to what phrases in destina-
tion language. The text we want to translate is analyzed and if
a phrase occurring in the sample is found (matched), its corre-
sponding translation is used.

2 � Translation to Slovak using Google Translator
Aktuálne predné technológie vo strojovom preklade je ²tatistický
strojový preklad. �tatistický strojový preklad je zaloºená na
²tatistických metódach. Prvé £íslo textu vzoriek - dvojica - zdro-
jovom jazyku / ur£enia jazyka je získa´. �tatistika nám hovorí, £o
slová alebo frázy v zdrojovom jazyku sa zvy£ajne (s de�novanou
pravdepodobnos´ou) zodpovedá tomu, £o fráz v cie©ovom jazyku.
Text chceme preklada´ je analyzovaná a ak frázy vyskytujúce sa
vo vzorke nachádza (uzavreté), jeho zodpovedajúce preklad je
pouºívaný.

3 � Translation to Slovak (human)
Aktuálnou vedúcou technológiou v strojovom preklade je ²tati-
stický strojový preklad. �tatistický strojový preklad je zaloºený
na ²tatistických metódach. Najprv sa získa mnoºstvo textových
vzoriek � párov � zdrojový jazyk / cie©ový jazyk. �tatistika
nám povie, ktoré slová alebo frázy v zdrojovom jazyku zvy£a-
jne (s ur£enou pravdepodobnos´ou) zodpovedajú ktorým frázam
v cie©ovom jazyku. Text, ktorý chceme preloºi´, sa analyzuje a
ak sa nájde fráza vyskytujúca sa vo vzorkách, je pouºitý jej zod-
povedajúci preklad.

4 � Translation of Slovak text(3) back into English via
Google Translator
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Current leader in machine translation technology is a statisti-
cal machine translation. Statistical machine translation is based
on statistical methods. First, get a lot of text samples - pairs -
source language / target language. Statistics tell us that words
or phrases in the source language usually (with a speci�ed proba-
bility) which correspond to phrases in the target language. Text,
we want to translate, analyze, and if found phrase occurring in
samples, used its corresponding translation.

We can count the di�erences between samples 2-3 and 1-4 to evaluate
the quality of the translation. But the reader can easily see the di�erence �
either in 1-4 if you are a native English speaker, or 2-3 if you are a native
Slovak speaker.

How it is possible to improve the translation? Let us concern with Slovak
language and possibly other Slavic, in�ecting languages in the same family.
We see that the main source of automatic translation errors is the in�ection.
Introducing a grammar module could greatly improve the quality of machine
translation.

5.2 Grammatically aware statistical machine

translation

I think it would be possible to modify the corpus of the sample text pairs
by replacing every word (both in the source and in the destination language)
by its root and add the respective grammar tags. The algorithm would then
have a greater possibility to match the grammatically neutral sentence; and
it could take the grammar tags into account when counting the probabili-
ties. Then in the output text generation, the respective grammar tags of the
paired text would be used to create the correct grammar forms of the des-
tination language. The separation of the roots and the grammar categories
would virtually multiply the size of the corpus by the number of possible
grammatical categories.

Let us illustrate this on a small example. Suppose the original corpus
contains this sentence pair:

I have a child. � Mám die´a.

This can be modi�ed as:
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(Person � �rst person) (to have � �rst person) (article � inde�nite) (child).
(ma´ � �rst person) (die´a � accusative).

Now if we want to translate the sentence You have a child, the original
method would (with a limited corpus) get us something like *Ty mám die´a,
because it could not �nd the exact match. The modi�ed method can search
for the

(Person � second person) (to have � second person) (article � inde�nite)
(child)

pattern, and use the respective word roots, but with the correct gram-
matical categories (matching separately the verb �to have� in English with
�ma´� in Slovak, and match the tag �verb in second person� in English with
�verb second person� in Slovak).

The resulting translation would be (ma´ � second person) (die´a � ac-
cusative).

This will be rewritten as Má² die´a what actually is a correct translation.



Chapter 6

Other Applications of Natural

Language Processing

6.1 Chatterbots

6.1.1 ELIZA

ELIZA was a �rst chatterbot program, developed in 1966 by Joseph Weizen-
baum. [37]. Its purpose was to illustrate the possibility of communication
between a human and a computer in a natural language.

The name ELIZA was based on the play Pygmalion by George Bernard
Shaw, because similarly to the main character of the play Eliza. As Eliza
was taught to speak only on a limited number of themes, ELIZA is able to
talk only in limited sense: to use catchwords and a few rules to manipulate
pronouns (transform the sentence from the �rst person to the second person)
or to use a general response like �Can you elaborate on that?�. ELIZA was
acting like a psychotherapist, so the patients were more con�dent and this
response did not make them suspicious.

6.1.2 Chatterbots and Turing test

Eliza has shown that a simple program, which does not even understand the
language, can �fool� human to think they speak to a human person. This is
related to Turing test [36], which states that a machine, which can imitate
human behavior, has to be considered intelligent.
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However, if an informed person talks to a chatterbot program, it can
easily detect the mechanic behavior. A chatterbot competition is held every
year to evaluate the quality of the current programs. In principle, they still
use the same tricks as the original ELIZA program: transformation rules
(although more elaborate), general responses, and maybe a limited context
preservation.

6.1.3 Catty v3 - arti�cial futility

An interesting attempt is Catty by Michal Zalewski. Catty does not use
standard methods and even does not attempt to analyze the statements. It
uses Google Search to �nd a �tting answer to the statement. The exact sen-
tence to be used is found by applying a trivial, language-blind word matching
algorithm.[38] Therefore, it can give a surprising response and answer any
theme � sometimes also independently on language.

You: hi, how are you?
Cat: Good morning, good morning, good morning to you, good
morning good morning and how do you do.

You: What do you do today?
Cat: Imagine what you could do with AAA at 350 MHz, with
current Anti Alias, etc., etc.

You: What is AAA?
Cat: The author of this letter asked whether today's rich in
beggar's clothes were likewise making a public statement about
what sorry folks they were inside.

You: Ko©ko je hodín?
Cat: Sice toho za tu p·l hodinu, co jsem na n¥j koukal skrz
okno Windows Media Playeru a p°es jeho webovou kameru, moc
ned¥lal, ale je to fakt zajimavý kouknout se na n¥koho, jak nor-
máln¥ ºije..

The last example question is in Slovak, the answer is in Czech1.

1Czech is a close language to Slovak
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6.2 Anti-plagiarism software

A common task nowadays is to detect student plagiarism. This usually re-
quires matching student's text with the database (or Internet). However, the
result is unreliable and always a human must judge the output. Students can
evade detection by rephrasing the text, for example using synonyms or chang-
ing word order. On the other hand, some legitimate sentences or phrases are
so common, that they are sometimes detected as plagiates (consider for ex-
ample mathematical de�nitions).

6.3 Mechanical rephrasing

An interesting work by Pále² [33] focuses on rephrasing the Slovak sentences.
Considering the rich morphological features of Slovak language, the work is
exceptional in a sense. However, the code or an executable program is not
available, so the results were not reproduced by another researchers. Let us
illustrate using examples from [33] what are the abilities of the program:

Lú£e slnka vysu²ili vodu v jazere. (original sentence) � The sunrays
have dried the water in the lake.

Vodu v jazere vysu²ili lú£e slnka. � The sunrays were what has dried
the water in the lake.

Slne£né lú£e vysu²ili jazernú vodu. � The sunrays have dried the lake
water.

Voda v jazere vyschla kvôli slne£ným lú£om. � The water in lake dried
out because of sunrays.

Lú£e slnka spôsobili vyschnutie jazernej vody � The sunrays have caused
the lake water to dry out.

Voda jazera sa vysu²ila pod lú£mi slnka. � The water of the lake has
dried out under the rays of sun.
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6.3.1 Rephrasing as a circumvention of plagiarism
detection?

A student could use such tool to automatically rephrase the text. This would
circumvent many (if not all) current plagiarism detection tools. Those are
based on simple comparision of strings � sentence parts, and are set up so
they detect blocks of text longer than (say) 5 words, to avoid unnecessary
matches. Rephrasing would reorder words and break the sentence in many
chunks, which would render exact matching impossible.

6.4 Semantic text comparision

How would it be possible to match two sentences having the same (or simi-
lar) meaning? A simple approach is �rst to handle synonyms and disregard
the word order. For synonyms, a thesaurus dictionary or a measure like
Normalized Google Distance [5] could be used.

An advanced technique like Latent semantic analysis [11] uses a matrix
of term occurences in documents to evaluate the similarity of the documents.

6.4.1 An echoic semantic context network

This method is inspired by the notion of brain/though association processes
under the view of associativism. When reading a text, a �ow of associations
and images occurs in the brain. The current state of science is unable to fully
simulate or even understand or describe the processes running in the brain.

However, we can approximate very roughly the associations between words
and their meanings by a semantic network. An associative semantic network
represents words, represented as nodes in a graph, connected according to
their meaning � the more similar is the meaning of the words, the highest
weight has the edge between the respective nodes. Suppose we could con-
struct this network using the Normalized Google Distance.

During processing of the text, every time a words is read, the respective
node is activated. The activation spreads also among neighboring nodes. The
activation is time-dependent and deceases with the progress of time. (Com-
pare this to interaction between Barsalou's Language System and Simulation
System, as described in [1] especially Figure 13.3). The activations are not
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reset after the sentence; this enables to re�ne the meaning of homonymes in
the next sentence.

The temporal pro�le of the nodes' activations represents the �meaning�
of the text.

6.4.2 Text comparison

Now, if we want to compare two texts according to their meaning (in a limited
sense) we can compare the respective temporal pro�les. Let's illustrate this
on a pair of sentences.
�I am hungry�
�I want to eat.�

Suppose that we have previously constructed an associative semantic net-
work consisting of words I, am, to, eat, food, hunger, desire, want (and oth-
ers) � see Figure ??. The meaning of the word to is too vague; as it servers
as an preposition, it is probably connected to a lot of words. The word am is
strongly connected to I and these two words do not have connection to the
words eat, food, hunger, desire, and want.

When reading the �rst sentence, the node for I is activated (see Figure ??.
Because it is strongly connected to the word am, this node is also activated.
Reading the next word am only strengthens this activation. Last word,
hungry, is connected to hunger very strongly, so the hunger is activated and
the activation spreads also to the nodes desire and want, and slightly also to
the nodes food and eat.

When reading the second, the nodes for I and am are activated similarly
as when reading the �rst sentence. Reading the next word want activates also
desire, however the direction desire→hunger is weak; so the node hunger is
not yet activated. Then word to is activated, and other nodes slightly decay
in their activity. Last word, eat, is connected to hunger, this impulse together
with the weak connection from desire activates the node hunger.

By comparing the temoral pro�le of activations the meaning of these two
sentences can be evaluated to be similar.

6.5 Physicist's Eliza

In the Bachelor work [20] which I was the advisor of, the author implemented
the idea of solving simple physical tasks using simple facts extraction and
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Figure 6.1: A part of the associative semantic network.

(a) I... (b) I am... (c) I am hungry

(d) I... (e) I want... (f) I want to... (g) I want to eat

Figure 6.2: Activations in the network while reading the sentences.
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feeding the facts into a database of physical formulas. The program works
on tasks given in Slovak language.

As the name Eliza suggests, the program does not really have to un-
derstand physics (like the ELIZA program did not really understood the
conversation). It matches the numbers and the measurement units to guess
the input data, and searches for keywords to �gure out the required output.

Let us suppose the problem reads 2 �Jane drives at an average speed of
50 km/h on a journey of 100 kilometers. How long does the journey take?�
The program can isolate the following inputs �50 km/h�, �100 km� and knows
the required output is �time�. It looks up a �tting formula with variables for
given data and the required output. It is then easy to evaluate the result
and generate an answer according to a simple pattern �The time is 2 hours�.

Example 13. Solving a simple task.

U: S akým ve©kým zrýchlením sa na ²tartovacej dráhe rozbieha lietadlo,
ktoré za 20 sekúnd dosiahne rýchlos´ 150 m/s?3

E: �as4: t = 20.0 sekund (20.0 s) Rýchlos´5: v = 150.0 m/s (150.0 m/s)
a = v / t
a = 150.0 / 20.0
a = 7.5 m*s-2

Zrýchlenie bolo 7.5 m*s-2.6

2for illustraton in English
3What acceleration has a plane on a runway, which in 20 seconds gains the speed of

150 m/s?
4Time
5Speed
6The acceleration was 7.5 ms−2.
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Chapter 7

Stemming via Myhill-Nerode

equivalence

In this chapter I propose a novel, language-independent method for stem-
ming. This method uses grammar induction to create a regular grammar
(equivalent to a minimal deterministic �nal automaton) from the list of
words, using Myhill-Nerode equivalence. The nonterminals in this gram-
mar represent sets of su�xes. This method assumes that the most used sets
of su�xes are those used to create in�ections. The words which di�er only
in an �in�ectional� su�x are supposed to be di�erent variants of the same
word and can be grouped together according to the same stem. This method
can be used for any in�ecting language. The result of this method on Slovak
language is presented.

7.1 Introduction

Stemming is the process of identifying the stem of the word. For example,
a word �mesto� (�a city� in Slovak language) becomes �mesta� in genitive
case � �(without) a city� � and �meste� in prepositional case � �(about) a
city�. The part of the word, to which a�xes are attached in order to form a
grammatical variant of the word, is called the stem, e.g. �mest-�, and usually
does not change across di�erent grammar variants.
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7.1.1 Stemming and its use

When a user wants to read an article which mentions the word �city�, she can
use a search engine to �nd such articles. However if the article is written in an
in�ecting language, e.g. in Slovak, searching the text for occurrences of the
string mesto yields only articles which mentions �a city� in the nominative
case, what is unsatisfying.

An advanced search engine can therefore search not only for occurrences of
mesto but also for occurrences of mesta, meste and other in�ection variants.

To accomplish this, the search engine has to have a dictionary of variants
for every possible word.

7.2 Previous work

Several methods for automatic stemming were proposed. Some methods are
directly based on rules speci�c to the language, e.g. English ([21],[34],), Bul-
garian ([26]) and other languages; or require an external rule set ([31],[30]).

Existing language-independent approaches are based on n-gram analysis
([17],[25]) and stochastic learning from training examples ([14]).

7.3 Grammatical induction

Grammatical induction (also called grammar inference) is the process of cre-
ating a formal grammar which produces a given (formal) language.

7.3.1 Formal grammar

A formal grammar is a set of rules which describe how to form strings in
a formal language. Usually a formal de�nition is given, which consist of: a
�nite set of non-terminal symbols, a �nite set of terminal symbols (alphabet),
a �nite set of production rules, and a starting symbol; in the formal notation
a quadruple (N, T, P, S). See section 2.3 on the page 11.

Regular grammar

Regular grammar is a formal grammar where rules have the form A → b,
A → bC or A → ε, where A,C are non-terminal symbols, b is a terminal
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symbol. The symbol ε means empty string.
In the Chomsky hierarchy (see the Figure 2.1, page 12) of grammars,

regular grammars are in a lowest position. They are strictly weaker than
classes of grammars higher in this position.

7.4 Method

We propose a method to create a regular grammar from a list of the words
belonging to a given natural language. For each nonterminal in this grammar
we count the number of its uses when generating words. The terminals with a
high count represent su�xes which are often used to form variations for many
di�erent stems. One may therefore assume that the su�xes common for many
stems are those which characterize the in�ection system of the language.
Those words which derivation is di�erent only in using those nonterminal
symbols can be grouped together because they have a common stem.

7.4.1 Myhill-Nerode theorem

Myhill-Nerode theorem[27] states that the relation R de�ned on words u, v
from the alphabet Σ by

u R v ⇐⇒def ∀x ∈ Σ∗(ux ∈ L⇔ vx ∈ L)

is a relation of equivalence. The consequence is that the language L is regular
if and only if the relation R is �nite, and the states of a minimal determin-
istic �nal automaton (DFA) for language L can be constructed according to
equivalence classes in R.

The idea of using the Myhill-Nerode theorem for stemming purpose was
not published until now to my knowledge. It is surprising, because this
method is simple and relatively straightforward.

7.4.2 Algorithm

Let us consider the given list of words to be a �nite (and therefore regular)
language L. Then, the algorithm implementing the relation from the Myhill-
Nerode theorem and creating the grammar is quite straightforward.

The numeric threshold � the minimum number of occurences to consider
the nonterminal to be � �in�ectional� � is entered by hand. Then we can mark
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nonterminals beyond the threshold and group the words which derivations
di�er only by marked nonterminals. The algorithm is as follows:

1. Create a list of all pre�xes of all words.

2. For each pre�x, create a set of su�xes that can be attached to it so we
get a word in the dictionary.

3. Pre�xes with the same set of su�xes belong to the same equivalence
class.

4. For each equivalence class, assign a nonterminal. For each equivalence
class and a su�x assign a grammatical rule.

5. Reduce each nonterminal, which contains only one rule, by this rule
in every occurrence of the nonterminal. (This will reduce chains of
nonterminals to fewer, more readable, string-like rules.)

6. Count the number of uses of each nonterminal.

7. Mark the nonterminals with the count greater or equal to the given
threshold.

8. Generate the words from the grammar using recursion. If you reach a
marked terminal, create a new group and add there all words from all
children calls.

9. Output the groups.

An implementation in C++ language is available under the GPL3 license
in the Appendix A. and also electronically at [22].

7.5 Results for the Slovak language

The Slovak language belongs to the family of Slavic languages. Similarly
to other Slavic languages, it has a rich morphology: endings mark gender,
number, and case in declension of nouns, adjectives, pronouns and numerals;
endings also mark person, number, tense, mood, and aspect in conjugation
of verbs.
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Table 7.1: Excerpt of resulting grammar

rules for the nonterminal #uses
0 → . . . | mesta 56 | meste | mesteck 61 | mesto 48 | mestsk 455 | mestu | . . . (start)
3 → i | ε 111

15 → ho | j | ε 179
48 → m | ε 101
49 → ch | m | ε 111
56 → ch | m 3 | ε 121
61 → a | o | u 7
83 → m | u 35

455 → a | e 15 | i | o 83 | u | y 49 2

7.5.1 Preparation of the dictionary

We have obtained a raw dictionary of all words from the Slovak National
Corpus [18]. This dictionary lists each word together with the frequency
distribution, automatically obtained from texts in corpus. The dictionary
was not manually checked, contains misspelled and slang words, words from
other languages and other artifacts like �www�. It also might not contain
every possible form of a word.

We have decided to consider only the words with the frequency greater
or equal than 1000. We also �ltered out tokens which contained a symbol
which is not a letter (e.g. �2x�).

7.5.2 Sample of created grammar

We present an excerpt of resulting grammar related to the words beginning
with �mest�, see Table 7.1. Numbers denote nonterminals. Each nonterminal
(except the starting nonterminal 0) is assigned a count of uses. We also
present a visualization of this part of the minimal automaton, see Figure 7.1.
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Figure 7.1: Part of the minimal automaton

7.5.3 Sample of the stemming dictionary

We present a sample of the stemming dictionary obtained by entering a
threshold of 2:

• mestach mestami mestam mesta

• meste

• mestecka mestecko mestecku

• mestom mesto

• mestska mestskeho mestskej mestske mestski mestskom mestskou mest-
sku mestskych mestskym mestsky

7.5.4 Summary of the results for Slovak language

The results are not perfect. This is partly because in�ection su�xes mix here
with derivational su�xes: The words �mesto� (�a city�), �mestecko� ( �little
city�) and �mestsky� (�related to city�) have a slightly di�erent meaning; and
each of them occurs in several of its grammatical forms.

Let us consider an interpretation of the linguistic term �stem� where one
has to distinguish between the derivational and the in�ection su�xes (so
called light stemming). In this interpretation, the ideal situation would be
to create three stem groups:
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• mestach mestami mestam mesta meste mestom mesto

• mestecka mestecko mestecku

• mestska mestskeho mestskej mestske mestski mestskom mestskou mest-
sku mestskych mestskym mestsky

The �rst group represents di�erent forms of the word �mesto�, the second
is for �mestecko� ( �little city�) and the third represents �mestsky� (�related
to city�).

Our method failed to identify the �rst group and broke it up into three
subgroups. It correctly identi�ed the second and the third group.

7.5.5 Estimating the error rate

We have manually estimated the error rate according to the methodology
described in [32]. This comprises the understemming index (UI) and the
overstemming index (OI).

We have manually processed the �rst 100 lines from the resulting dic-
tionary. Each line consists of words with the same stem. In the ideal case,
one line corresponds to one real stem � all words having this particular stem
belong in one group. In the understemming case, several lines have to be
merged into one group. In the overstemming case, the line has to be split
into several stem groups.

The formulas for UI and OI1 are motivated by looking at every (un-
ordered) pair of words in a group. Each two words can be evaluated as
having the same stem, or as not having the same stem. We then evaluate
the number of pairs missed (for UI), or incorrectly assigned (for OI) by the
algorithm in each group, and sum these numbers for all groups. We also
calculate the number of pairs in correct (manual) stemming.

UI =

∑
stem group g

∑
line l in group g

0.5nl ∗ (Ng − nl)∑
stem group g

0.5Ng(Ng − 1)
,

where g represents a correct group, consisting of some line(s), Ng is the
number of words in this group, and nl is the number of words in the line l.
The outer sums run for each stemming group, and inner sum runs for each

1OI(L) in Paice's notation
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line which belongs to one group. Only groups consisting of more than one
word are considered.

OI =

∑
line l

∑
stem s in line l

0.5ns ∗ (Nl − ns)∑
line l

0.5Nl(Nl − 1)
,

where l represents a line from the dictionary, consisting of (one or multiple)
real stems, Ns is the number of words in this line, and ns is the number of
words for the stem s. The outer sums run for each line, and inner sum runs
for each stem, which is present in that particular line. Only lines consisting
of more than one word are considered.

Understemming

The UI for our method is 0.57. This is higher compared to Paice's results for
English stemmers (0.11�0.37 for three di�erent stemmers and three di�erent
word sources2).

Overstemming

In the sample considered, we have seen only one case of overstemming. There-
fore the OI is very close to zero (0.007), which is lower than in Paice's results
(0.07�0.37).

7.5.6 Discussion

Our method is usable for light stemming. The understemming ratio is rela-
tively high, the overstemming is almost non-existent. Our method is unable
to join cases, where the stem itself changes in di�erent grammatical forms,
e.g. mesto (a city) � miest ((without) cities).

It is also worth noting that the Slovak language has much more compli-
cated morphology than English, and also that our method does not use any
speci�c language rules (contrary to the stemmers used in Paice's test).

2for the light stemming level, in [32] so called �tight groupings�
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7.6 Expanding the method to pre�xes and

su�xes

Because our method is based on a regular grammar, it is impossible to use
it directly for isolating the morphological root of the word (the part of the
word which are pre�xes and su�xes attached to). However, it is possible to
reverse the direction in which the method reads and processes words. Then
only pre�xes (instead of su�xes) will be processed. It is also possible to join
this information with the information obtained in a direct (non-reversed)
run.3

7.6.1 Pre�x (reverse) run

This can be done easily by reversing each word in the original dictionary,
running the unmodi�ed algorithm, and reversing each word in the resulting
dictionary.

This run produces group of words having a common morphological stem
and having the same grammatical ending (because the words were grouped
only disregarding the pre�xes). It should be noted that in Slovak language,
adding a pre�x can substantially change the semantics of the word4. Al-
though the words could be still considered having a common morphological
root, this is sometimes undesirable in practical applications.

Another interesting case is the negation, which is created by adding the
pre�x ne-. This run successfully joined the positive and negative forms.

7.6.2 Joining the information from direct and reverse
run

We can use the information contained in the dictionaries created separately
in the direct and in the reverse run. The words in �rst dictionary are grouped
disregarding their in�ectional su�xes; the words in the second dictionary are
grouped according to one grammatical variation of a common morphological
root.

3I wish to thank Andrej Lú£ny for this idea.
4e.g. tvrdenie (a claim) � potvrdenie (an acknowledgment), £inný (active) � ú£inný

(e�ective), drºa´ (to hold) � vydrºa´ (to endure) � zadrºa´ (to detain).
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Now we can create a graph, each word being a node. We add an edge
between those words, which occur in the same group (at the same line)
in either of the dictionaries. The connected components in this graph are
the resulting stemming groups. One component contains words which share
the common morphological root, without regard to the attached pre�xes or
su�xes.

During this join, the errors from both runs are accumulated: if the di-
rect run failed to merge di�erent grammatical variations, these will remain
separate also in the merged dictionary. A similar argument holds also for
overstemming.

7.6.3 Results for bi-directional approach

A good example of the resulting components could be the groups contain-
ing the forms with the morphological roots môº-, which is common for the
wordsmôºe-nemôºe (can-cannot), the rootmoºn- for wordsmoºné, nemoºné,
moºnos´, moºno (possible, impossible, possibility, (it is) possible).

• nemôºe nemôºeme môºeme môºem môºete nemôºete môºe² nemôºe²
môºe nemôºem nemôºu

• nemoºné moºné moºného nemoºnos´ moºnos´ moºnostiach moºnostiam
moºnosti moºností moºnos´ami moºnos´ou nemoºno moºno

We have not estimated the error rate for this bi-directional run; mainly
because it is a laborious manual task. It is dependent on the error rate of
separate runs in both directions, which is relatively high. The bi-directional
run is shown only as an illustration for further possibilities � an improvement
of one-directional run will result also in improvement of the bi-directional
method.

7.7 Further work

It should be possible to extend our approach using a context-free grammar
induction, instead of simple Myhill-Nerode equivalence. An algorithm for
context-free grammars is described for instance in [7]. Context-free gram-
mar should perform better in identifying morphological roots and also in
separating multiple su�xes or pre�xes.
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The stem-changes are a problematic issue. Assuming that there are reg-
ularities in the language in stem-changes, it should be possible to detect
them and incorporate this information into the grammar. However, we hy-
pothesize that (at least in Slovak language) it would be necessary to use a
context-sensitive grammar, because the rules for stem-changes are mostly
context sensitive (deleting or changing a part of the stem depends usually
on the part itself, on the grammatical case and the paradigm, and on the
preceding and the following characters)5.

7.8 Conclusion

Our method is able to create a stemming dictionary using a regular grammar.
It can isolate frequent su�xes in an in�ecting language and create stemming
groups accordingly. However it requires a correct and complete dictionary,
because every form of a word is taken into account with equal weight (fre-
quencies are not used). When the derivation and the in�ection su�xes mix
together, our method tends to distinguish between derivation and in�ection.

It is also possible to use our method in a reverse manner, for identifying
morphological pre�xes, and subsequently it is possible to join both directions
to obtain morphological (heavy) stemming. This method is only preliminar
and is in�uenced by the errors from the one-directional runs.

The resulting dictionary has to be manually checked. The estimated
understemming index for light stemming is approximately 0.57 and the over-
stemming index is approximately 0.007.

5See, for example, rules for genitive case of plural nouns at page 103 in [9]



46 CHAPTER 7. STEMMING VIA MYHILL-NERODE EQUIVALENCE



Appendix A

Code for Myhill-Nerode

Equivalence

1 /∗ Creation o f e qu i va l ence c l a s s e s o f r e l a t i o n R_L accord ing to
Myhi l l−Nerode theorem

2 ( c ) Michal Maly , 2010
3
4 uRv <=>_def \ f o r a l l x \ in \Sigma^∗ ( ux \ in L <=> vx \ in L)
5 ∗/
6
7 /∗
8 This program i s f r e e so f tware : you can r e d i s t r i b u t e i t and/or

modify i t under the terms o f the GNU General Pub l i c
License as pub l i s h ed by the Free Sof tware Foundation ,
e i t h e r ve r s i on 3 o f the License , or ( at your opt ion ) any
l a t e r ve r s i on .

9
10 This program i s d i s t r i b u t e d in the hope t ha t i t w i l l be

u s e fu l , but WITHOUT ANY WARRANTY; wi thout even the
imp l i ed warranty o f MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU General Pub l i c
License f o r more d e t a i l s .

11
12 You shou ld have r e c e i v ed a copy o f the GNU General Pub l i c

License a long wi th t h i s program , see f i l e COPYING.
13 ∗/
14
15 #include<iostream>
16 #include<st r ing>
17 #include<vector>

47
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18 #include<map>
19 #include<set>
20 #include<u t i l i t y >
21 #include<algorithm>
22 #include<i t e r a t o r >
23
24 using namespace std ;
25 class Pre f i x ;
26 class Nonterminal ;
27
28 s e t < s t r i n g > d i c t i ona ry ;
29 vec to r < s e t < s t r i n g > >equ iva l enc e_c l a s s e s ;
30 vec to r < Pre f i x > p r e f i x e s ;
31
32 class Pre f i x {
33 public :
34 s t r i n g word ;
35 private :
36 s e t < s t r i n g > s u f f i x e s ;
37 public :
38 Pr e f i x ( ) {
39 } Pre f i x ( const s t r i n g & __word) : word (__word) {
40 }
41 Pre f i x ( const Pre f i x & p r e f i x ) : word ( p r e f i x . word ) , s u f f i x e s (

p r e f i x . s u f f i x e s ) {
42 }
43
44 friend bool operator <(const Pre f i x & a , const Pre f i x & b) ;
45 friend bool operator ==(const Pre f i x & a , const Pre f i x & b) ;
46 friend bool by_equivalence_class ( const Pre f i x & a , const

Pre f i x & b) ;
47
48 void compute_suf f ixes ( ) {
49 int word_size = word . s i z e ( ) ;
50 for ( s e t < s t r i n g >:: i t e r a t o r dictionaryWord = d i c t i ona ry

. lower_bound (word ) ; dictionaryWord != d i c t i ona ry . end
( ) ; ++dictionaryWord ) {

51 i f ( s t r i n g (∗ dictionaryWord , 0 , word_size ) == word )
52 s u f f i x e s . i n s e r t ( s t r i n g (∗ dictionaryWord , word_size

) ) ;
53 else

54 break ;
55 }
56 }
57
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58 } ;
59
60 void compute_suf f ixes ( Pr e f i x & k)
61 {
62 k . compute_suf f ixes ( ) ;
63 }
64
65 bool operator <(const Pre f i x & a , const Pre f i x & b)
66 {
67 return a . word < b . word ;
68 }
69
70 bool operator ==(const Pre f i x & a , const Pre f i x & b)
71 {
72 return a . word == b . word ;
73 }
74
75 ostream & operator <<(ostream & o , const Pre f i x & k)
76 {
77 return o << k . word ;
78 }
79
80 bool by_equivalence_class ( const Pre f i x & a , const Pre f i x & b)
81 {
82 return a . s u f f i x e s < b . s u f f i x e s ;
83 }
84
85 void add_pref ixes ( const s t r i n g & word )
86 {
87 // a l l ow a l s o the empty word
88 for (unsigned int i = 0 ; i <= word . s i z e ( ) ; i++) {
89 p r e f i x e s . push_back ( Pr e f i x ( s t r i n g (word , 0 , i ) ) ) ;
90 }
91 }
92
93 map < st r ing , int >tab l e ;
94
95 int which_class ( const s t r i n g & word )
96 {
97 map < st r i ng , int >:: i t e r a t o r which = tab l e . f i nd (word ) ;
98 i f ( which == tab l e . end ( ) ) {
99 /∗ in the case we f i nd no c l a s s , we re turn the c l a s s

t ha t which a l l o ther words are in ∗/
100 return equ iva l enc e_c l a s s e s . s i z e ( ) ;
101 } else {
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102 return which−>second ;
103 }
104
105 }
106
107 typedef pa i r < s t r i ng , Nonterminal ∗ >Rule ;
108
109 int nonterminalNumbers = 0 ;
110
111 class Nonterminal {
112 public :
113 int symbolNumber ;
114 vec to r < Rule > ru l e ;
115 bool modi f i ed ;
116 bool outputted ;
117 int usesCount ;
118 public :
119 Nonterminal ( int x = −1) : symbolNumber (x ) , modi f i ed ( fa l se ) ,

outputted ( fa l se ) , usesCount (0 ) {
120 } void modify_rules ( ) {
121 i f ( modi f i ed )
122 return ;
123 modi f i ed = true ;
124
125 for (unsigned int i = 0 ; i < ru l e . s i z e ( ) ; i++) {
126 Rule o l d r u l e = ru l e [ i ] ;
127 Nonterminal ∗ x i = o l d r u l e . second ;
128
129 i f ( x i )
130 xi−>modify_rules ( ) ;
131
132 /∗ i f the d e r i v a t i on i s c l e a r or the nonterminal i s

u s e l e s s , we r ewr i t e i t ∗/
133
134 i f ( x i && xi−>ru l e . s i z e ( ) == 1) {
135 Rule newRule = Rule ( o l d r u l e . f i r s t + xi−>ru l e [ 0 ] .

f i r s t , xi−>ru l e [ 0 ] . second ) ;
136 ru l e [ i ] = newRule ;
137 continue ;
138 }
139
140 i f ( x i && xi−>usesCount == 1) {
141 // d e l e t e the o ld ru l e
142 ru l e . e r a s e ( r u l e . begin ( ) + i ) ;
143 // . . . and r ep l a c e by a s e r i e s o f new ru l e s
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144 for ( int j = 0 ; j < xi−>ru l e . s i z e ( ) ; j++)
145 ru l e . i n s e r t ( r u l e . begin ( ) + i , Rule ( o l d r u l e .

f i r s t + xi−>ru l e [ j ] . f i r s t , xi−>ru l e [ j ] .
second ) ) ;

146 }
147
148 }
149 }
150 void makeSymbolNumbers ( ) {
151 i f ( symbolNumber != −1)
152 return ;
153 symbolNumber = nonterminalNumbers++;
154
155 for (unsigned int i = 0 ; i < ru l e . s i z e ( ) ; i++)
156 i f ( r u l e [ i ] . second )
157 ru l e [ i ] . second−>makeSymbolNumbers ( ) ;
158 }
159
160 void output ( ) {
161 i f ( outputted )
162 return ;
163 outputted = true ;
164
165 cout << usesCount << ' \ t ' << symbolNumber << " −> " ;
166 for (unsigned int i = 0 ; i < ru l e . s i z e ( ) ; i++) {
167 i f ( i )
168 cout << " | " ;
169
170 i f ( r u l e [ i ] . second )
171 cout << ru l e [ i ] . f i r s t << " " << ru l e [ i ] . second−>

symbolNumber ;
172 else {
173 i f ( r u l e [ i ] . f i r s t != "" )
174 cout << ru l e [ i ] . f i r s t ;
175 else

176 cout << "\\ eps " ;
177 }
178 }
179 cout << endl ;
180
181 for (unsigned int i = 0 ; i < ru l e . s i z e ( ) ; i++)
182 i f ( r u l e [ i ] . second )
183 ru l e [ i ] . second−>output ( ) ;
184 }
185
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186 void generate ( s t r i n g s , bool grouping ) {
187 bool s p l i t g r ouphe r e = fa l se ;
188 i f ( usesCount >= 2 && grouping ) {
189 sp l i t g r ouphe r e = true ;
190 grouping = fa l se ;
191 }
192
193 for (unsigned int i = 0 ; i < ru l e . s i z e ( ) ; i++) {
194
195 s t r i n g sExt = s + ru l e [ i ] . f i r s t ;
196
197 i f ( r u l e [ i ] . second ) {
198 ru l e [ i ] . second−>generate ( sExt , grouping ) ;
199 } else {
200 cout << sExt ;
201 i f ( grouping )
202 cout << endl ;
203 else

204 cout << " " ;
205 }
206 }
207
208 i f ( s p l i t g r ouphe r e )
209 cout << endl ;
210
211 }
212 } ;
213
214 Rule modify ( Rule r u l e )
215 {
216 Nonterminal ∗ x i = ru l e . second ;
217 i f ( x i )
218 xi−>modify_rules ( ) ;
219
220 /∗ i f the d e r i v a t i on i s c l e a r or the nonterminal i s u s e l e s s ,

we r ewr i t e i t ∗/
221 i f ( x i && ( xi−>ru l e . s i z e ( ) == 1 | | xi−>usesCount == 1) ) {
222 Rule wasModified = modify ( xi−>ru l e [ 0 ] ) ;
223 return make_pair ( r u l e . f i r s t + wasModified . f i r s t ,

wasModified . second ) ;
224 } else

225 return r u l e ;
226 }
227
228 int main ( )
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229 {
230 // load the words
231 while ( c in ) {
232 s t r i n g word ;
233 c in >> word ;
234 d i c t i ona ry . i n s e r t (word ) ;
235 }
236 c e r r << "count o f ( unique ) words = " << d i c t i ona ry . s i z e ( ) <<

endl ;
237
238 /∗ we crea t e a l l p o s s i b l e s t r i n g s −− p r e f i x e s o f the words . I f

we a t t ach something to i t , we have a chance to ge t a word
from the language L∗/

239 for_each ( d i c t i ona ry . begin ( ) , d i c t i ona ry . end ( ) , add_pref ixes ) ;
240 c e r r << "number o f p r e f i x e s = " << p r e f i x e s . s i z e ( ) << endl ;
241 s o r t ( p r e f i x e s . begin ( ) , p r e f i x e s . end ( ) ) ;
242 vec to r < Pre f i x >:: i t e r a t o r l a s t = unique ( p r e f i x e s . begin ( ) ,

p r e f i x e s . end ( ) ) ;
243 p r e f i x e s . r e s i z e ( l a s t − p r e f i x e s . begin ( ) ) ;
244 c e r r << " t o t a l number o f unique p r e f i x e s = " << p r e f i x e s . s i z e

( ) << endl ;
245
246 /∗ compute the s e t o f a l l owa b l e s u f f i x f o r every p r e f i x ∗/
247 c e r r << "computing s u f f i x e s . . . " << endl ;
248 for_each ( p r e f i x e s . begin ( ) , p r e f i x e s . end ( ) , compute_suf f ixes ) ;
249 /∗ s o r t by the e qu i va l ence c l a s s −− p r e f i x e s b e l ong ing to the

same c l a s s are t o g e t h e r in a row∗/
250 c e r r << " so r t i n g . . . " << endl ;
251 s o r t ( p r e f i x e s . begin ( ) , p r e f i x e s . end ( ) , by_equivalence_class ) ;
252 c e r r << " con s t ruc t i ng equ iva l ence c l a s s e s . . . " << endl ;
253
254 /∗ c r ea t e the e qu i va l ence c l a s s e s ∗/
255 s e t < s t r i n g > equ iva l enceC la s s ;
256 for ( vec to r < Pre f i x >:: i t e r a t o r p r e f i x = p r e f i x e s . begin ( ) ;

p r e f i x != p r e f i x e s . end ( ) ; ++p r e f i x ) {
257 equ iva l enceC la s s . i n s e r t ( p r e f i x−>word ) ;
258 tab l e . i n s e r t ( pa i r < s t r i ng , int >(pre f i x−>word ,

equ iva l enc e_c l a s s e s . s i z e ( ) ) ) ;
259
260 i f ( ( p r e f i x + 1) == p r e f i x e s . end ( ) | |

by_equivalence_class (∗ pre f i x , ∗( p r e f i x + 1) ) ) {
261 equ iva l enc e_c l a s s e s . push_back ( equ iva l enceC la s s ) ;
262
263 equ iva l enceC la s s . c l e a r ( ) ;
264 }
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265 }
266 c e r r << "number o f equ iva l ence c l a s s e s = " <<

equ iva l enc e_c l a s s e s . s i z e ( ) << endl ;
267
268 // f r e e some memory
269 p r e f i x e s . c l e a r ( ) ;
270
271 /∗ accord ing to the cons t ruc t ed e qu i va l ence c l a s s e s i t i s

p o s s i b l e to c r ea t e a f i n i t e s t a t e automaton which accep t s the
g iven language , where

272
273 [ x ] i s the e qu i va l ence c l a s s , which conta ins the word x
274 K = {[ x ] | x \ in \Sigma^∗}
275 \ d e l t a ( [ x ] , a ) = [ xa ]
276 F = {[ x ] | x \ in L}
277 q0=[\ eps ]
278 ∗/
279
280 /∗ and a l s o to c r ea t e a grammar G=(N,T,P,\ Sigma ) which genera t e s

the g iven language , where
281
282 N = K
283 T = \Sigma
284 P = {q −> ap | \ d e l t a ( q , a ) = p} \cup
285 {q −> \eps | q \ in F}
286 ∗/
287
288 /∗ we have one nonterminal to every c l a s s ;
289 excep t we do not have a c l a s s f o r the o ther words ( f o r which

we cannot genera te anyth ing )
290 ∗/
291 vec to r < Nonterminal > nonterminal ( equ i va l enc e_c l a s s e s . s i z e ( )

+ 1) ;
292
293 c e r r << " con s t ruc t i ng nontermina ls . . . " << endl ;
294 for (unsigned int i = 0 ; i < equ iva l enc e_c l a s s e s . s i z e ( ) ; i++)

{
295 c e r r << i << "\ r " ;
296 s t r i n g word = ∗ equ iva l enc e_c l a s s e s [ i ] . beg in ( ) ;
297 char cha rac t e r [ 2 ] ;
298 charac t e r [ 1 ] = 0 ;
299 for ( cha rac t e r [ 0 ] = 1 ; (unsigned char ) ( cha rac t e r [ 0 ] ) <

255 ; cha rac t e r [0]++) {
300 int equ iva l enceC la s s = which_class (word + charac t e r ) ;
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301 i f ( (unsigned int ) equ iva l enceC la s s !=
equ iva l enc e_c l a s s e s . s i z e ( ) ) {

302 nonterminal [ i ] . r u l e . push_back (make_pair ( s t r i n g (
cha rac t e r ) , &nonterminal [ equ iva l enceC la s s ] ) ) ;

303 nonterminal [ equ iva l enceC la s s ] . usesCount++;
304 }
305 }
306
307 // i f i t i s a f i n a l s t a t e , add ru l e f o r \ eps
308 i f ( d i c t i ona ry . count (word ) != 0)
309 nonterminal [ i ] . r u l e . push_back ( Rule ( s t r i n g ( "" ) , 0) ) ;
310 }
311
312 /∗ to save some nonterminals :
313 i f the nonterminal con ta ins on ly one ru l e q−>ap ,
314 we f o l l ow t ha t r u l e to the po in t we f i nd a nonterminal
315
316 q−a_0p_0
317 p_0−>a_1p_1
318 . . .
319 p_n−>a_{n+1}p{n+1} | b_{n+1}r{n+1}
320
321 con ta in ing more r u l e s . We change the ru l e to q−>a_0a_1 . . . a_n

p_n
322
323 We throw away unused nonterminals (we don ' t output them) .
324 ∗/
325
326 // beg in wi th the [\ eps ] c l a s s
327 c e r r << " [\\ eps ] = " << which_class ( "" ) << endl ;
328 c e r r << " reduc ing the grammar . . . " << endl ;
329 nonterminal [ which_class ( "" ) ] . modify_rules ( ) ;
330
331 c e r r << "numbering the nontermina l s . . . " << endl ;
332 nonterminal [ which_class ( "" ) ] . makeSymbolNumbers ( ) ;
333
334 c e r r << "number o f reduced nontermina ls = " <<

nonterminalNumbers << endl ;
335
336 c e r r << " outputt ing . . . " << endl ;
337 nonterminal [ which_class ( "" ) ] . generate ( "" , true ) ;
338 return 0 ;
339 }

myhill_nerode.cpp
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